Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra.
نویسندگان
چکیده
Reflection electron energy loss spectra from some insulating materials (CaCO3, Li2CO3, and SiO2) taken at relatively high incoming electron energies (5-40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO2, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E - Egap)(1.5). For CaCO3, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li2CO3 (7.5 eV) is the first experimental estimate.
منابع مشابه
New Method for Synthesis of Zinc Metaborate Zn4B6O13 Crystals via Sol-Gel Process and Investigation of DFT Calculations
In this work facile sol-gel (pechni) method has been successfully established to synthesize Zn4B6O13 nanocrystals which have cubic crystals with lattice parameter: a =7.48 A. The structure and morphology of the obtained material were studied by X-ray diffraction (XRD), Infrared spectra (IR), scanning electron microscopy (SEM) and photoluminescence analysis. The experimental results show a band ...
متن کاملNew Method for Synthesis of Zinc Metaborate Zn4B6O13 Crystals via Sol-Gel Process and Investigation of DFT Calculations
In this work facile sol-gel (pechni) method has been successfully established to synthesize Zn4B6O13 nanocrystals which have cubic crystals with lattice parameter: a =7.48 A. The structure and morphology of the obtained material were studied by X-ray diffraction (XRD), Infrared spectra (IR), scanning electron microscopy (SEM) and photoluminescence analysis. The experimental results show a band ...
متن کاملInvestigation of Optical Property of Tetragonal BiFeO3
ing the full potential linearized augmented plan wave in framework density functional theory(DFT) with wien2k code. The band structure and energy gap of the bulk structures are calculated with GGA-PBE, GGA+U and GGA+MBJ approximations, and results obtained from the MBJ function are more consistent with the reported experimental results. The optical properties such as real and imaginary parts...
متن کاملModulating Band Gap and HOCO/LUCO Energy of Boron-Nitride Nanotubes under a Uniform External Electric Field
In this study, spectroscopic properties of the single-walled boron-nitride nanotube (SWBNNT) –a semiconductor channel in molecular diodes and molecular transistors–have been investigated under field-free and various applied electric fields by first principle methods.Our analysis shows that increasing the electric field in boron-nitride nanotube (BNNT) decreases the Highest Occupied Crystal Orbi...
متن کاملFabrication of Graphene Oxide Thin Films on Transparent Substrate via a Low-Voltage Electrodeposion Technique
Graphene oxide (GO) thin films were simply deposited on fluorine doped tin oxide (FTO) substrate via a low-voltage electrodeposition. The GO and GO thin films were characterized by Zeta Potential, X-ray diffraction, Ultraviolet-Visible spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and energy dispersive X-ray spectrosc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 143 10 شماره
صفحات -
تاریخ انتشار 2015